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Abstract

The control of the forced vibration response of structures through the optimal tuning of its supports is
desirable in many applications. Tuning may enhance the dissipation of vibration energy within the
supports, thereby reducing fatigue and structure-borne noise. Two different models were developed to
calculate the optimal support stiffness that minimizes the velocity response of homogeneous plates. The first
model, based on the wave propagation at the edge, yields a good first cut approximation of the optimal
properties. The optimal viscous and viscoelastic support stiffness for minimal reflection at the edge was
calculated. Maximum absorption of the incident waves occurs when the viscous support stiffness matches
the characteristic mechanical impedances of the plate. The second model, based on the Rayleigh–Ritz
method, yields more accurate estimates of the optimal support stiffness required to minimize the forced
velocity response of the finite rectangular plate. The optimal support properties calculated from the two
different methods were in good agreement. This suggested that the modal response of the plate is strongly
influenced by the wave reflections at the edges. Finally, the effects of support properties on the sound
radiated from the plate were investigated. The optimal support stiffness that minimizes the radiated sound
power was found to be smaller than the value that minimizes the velocity response. The results show that
both the velocity response and sound radiation are strongly influenced by dissipation of vibration energy at
the edges, and demonstrate that support tuning can yield significant noise and vibration reduction.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Flexible supports affect the modal properties of structures, for example beams and plates. This
interaction is utilized in the design of damping treatments through the use of viscoelastic supports.
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Practical applications are seal-supported vehicle side-glass windows. Glass run and belt line seals
support side-glass window panels continuously along their edges. The optimization of the seal
viscoelastic properties may enhance the sound transmission loss of the windows, and help to
reduce interior noise in the vehicle. The approach of optimally tuning the supports is attractive
since the mechanical properties of the supports may be easier to modify than the properties of the
supported structure itself. Analytical models for the response of the compliantly supported
structures are needed to guide design and to calculate the optimal support properties. This
problem was the object of the present study.
Many vibration control methods are available for continuous systems. In particular, dynamic

absorbers may be used to reduce the vibrations of continuous systems such as rods and beams [1].
Dynamic absorbers consist of a single-degree-of-freedom system (mass, spring, and viscous
damper) attached to the primary structure. Optimal values for the absorber natural frequency and
damping ratio must be calculated to minimize the vibrations of specific modes at resonance. For
plates and shells, the dynamic absorber performance may be analyzed using the receptance
method [2]. The presence of the dynamic absorber modifies the modal properties of the primary
structure, and must be accounted for.
In cases where structures are compliantly supported, the support mass is often negligible

relative to that of the supported structure. The support may be idealized as a stiffness along the
boundaries. The effects of support flexibility on the vibration of beams and plates have been
investigated before. Kang and Kim [3] investigated the effects of support stiffness on the vibration
of beams and plates. The flexible supports were represented by translational and rotational
springs with complex stiffnesses. The variation of the modal properties of the structures with the
support stiffness was calculated to guide the design of support properties. Macbain and Genin [4]
developed numerical methods using a central difference formula to analyze the vibrations of
beams with flexible supports. Their method was used to analyze energy dissipation in vibrating
Timoshenko beams. The system loss factors were found to increase with a decrease in the support-
to-beam elastic modulus ratio. Chen and Zhou [5] investigated the effects of damping on the
vibrations of distributed systems using wave propagation methods.
The flow-induced vibration of viscoelastically supported rectangular plates was investigated in

Ref. [6]. The case of a homogeneous rectangular plate supported along all four edges by a complex
viscoelastic element was treated. The results suggested that there is an optimal support stiffness
that minimizes the flow-induced vibration response of the plate.
The object of the current study was to develop theoretical methods to calculate the optimal

support stiffness that minimizes the velocity response of the plate, and sound radiation. The
effects of compliant viscoelastic supports on the vibro-acoustic properties of a rectangular plate
were investigated.
Two different numerical procedures were developed to determine the optimal support

properties for minimal vibration response. The wave propagation at the edge was considered
first to estimate the optimal stiffness. The compliant supports were idealized as distributed
translational and rotational spring and damping elements. Reflection ratios were calculated from
the relationship between incident and reflected waves. The stiffness values that minimized the
reflection ratios were calculated.
Subsequently, a more detailed model was developed to account for the possible effects of two-

dimensional transverse waves. The Rayleigh–Ritz method was used, in conjunction with modified
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beam trial functions [6] to calculate the forced vibration response of the viscoelastically supported
rectangular plate. This approach ensured fast convergence rates, which is advantageous for the
vibration analysis of high order modes. The vibration level in octave bands was calculated as a
function of the viscoelastic support properties to determine the optimal stiffness for minimum
vibration response. The obtained optimal stiffness values were compared to the previously
obtained optimal values for minimal transverse wave reflection. The comparison clarifies the
relationship between the modal response of the plate and the condition for optimal vibration
energy dissipation at the edges.
Numerical investigations of the sound power radiated from the viscoelastically supported plate

were performed to determine the optimal support stiffness for minimal sound radiation. The
results were once again compared to the values that minimized the vibration response of the plate.
The effects of the support stiffness and vibration energy dissipation on the acoustic properties of
the plate were elucidated.

2. Wave propagation at the edge

In the first step of the study, transverse waves approaching normally to the edge were
considered. The plate was assumed to be infinitely long in the x direction in order to allow for the
calculation of the reflection ratio of the normally incident bending waves. Transverse
displacements were assumed to vary only with the distance along the direction normal to the
edge, as shown schematically in Fig. 1. The equation of motion for the free transverse vibrations
of a homogeneous plate without any constraints in the y direction is [7]

D
@4w

@x4
þ rbh

@2w

@t2
¼ 0; ð1Þ

where D = Eh3/12(1�n2) is the bending stiffness, w is the transverse displacement, rb is the density,
h is the thickness, E is Young’s modulus, and n is the Poisson’s ratio. Two boundary conditions at
the edge are

D
@3 #wð0Þ
@x3

¼ � #St #wð0Þ; ð2aÞ

D
@2 #wð0Þ
@x2

¼ #Sr

@ #wð0Þ
@x

; ð2bÞ

where #St and #Sr are the complex translational and rotational boundary stiffnesses, respectively.
The usual complex notation is used, wðx; tÞ ¼ Re #w xð Þeiot

� �
: To calculate the reflection ratio at the

edge, normally incident harmonic bending waves with complex amplitude #B were assumed to
propagate toward the edge from x=N. A similar approach was used by Chen and Zhou [5] to
calculate asymptotic estimates for the reflection ratios. The plate displacement at the edge is
expressed as

#w xð Þ ¼ #Ae�ikbx þ #Beikbx þ #Ce�kbx; ð3Þ
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where #A and #C are the complex amplitudes of the reflected harmonic wave and the exponentially
decaying wave, respectively, and kb is the wave number related to the circular frequency, kb ¼
o2rbh=D
� �1=4

:
Applying the boundary conditions shown in Eq. (2), the transfer functions between the incident

and reflected harmonic waves are

#A

#B
¼

iþ 1ð Þ þ 2i #R � 2 #T � iþ 1ð Þ #R #T

i� 1ð Þ þ 2i #R þ 2 #T � i� 1ð Þ #R #T
; ð4aÞ

#C

#B
¼

2i 1þ #R #T
� �

i� 1ð Þ þ 2i #R þ 2 #T � i� 1ð Þ #R #T
; ð4bÞ

where the non-dimensional stiffness parameters are defined as

#T ¼
#St

Dk3
b

; ð5aÞ

#R ¼
#Sr

Dkb

ð5bÞ

To study the dissipation of vibrational energy at the edge, two different boundary conditions,
viscous and viscoelastic boundaries, were considered. Note that when the plate is supported
elastically, the boundary stiffness is purely real and the magnitude of the reflected waves, #A

�� ��; is
the same as that of the incident waves, #B

�� ��: This shows that there is no energy dissipation at the
edge of the elastically supported plate.
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Fig. 1. Normally, incident and reflected bending waves at the edge of a plate. (a) viscous support; (b) viscoelastic

support.
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2.1. Viscous supports

When the plate is supported viscously, Fig. 1(a), the non-dimensional stiffness parameters are
given as

#T ¼
iobt

Dk3
b

ð6aÞ

#R ¼
iobr

Dkb

ð6bÞ

From Eqs. (4) and (6), complete absorption of incident waves occurs when the damping
coefficients are

bt ¼
Dk3

b

o
; ð7aÞ

br ¼
Dkb

o
: ð7bÞ

These viscous damping coefficients are identical to the characteristic translational and rotational
mechanical impedances of the transversely vibrating plate, which are defined as

Qxz

’w
¼

Dk3
b

o
; ð8aÞ

Mxx

’j
¼

Dkb

o
; ð8bÞ

where Qxz=D@3w=@x3 is the shear force, Mxx=D@2w=@x2 is the bending moment, and jx is the
angular deflection. The characteristic mechanical impedances in Eq. (8) were calculated by
considering harmonic bending waves propagating in the negative x-direction such that the plate
displacement is given as wðx; tÞ ¼ Re #BeiðotþkxÞ

� �
: Complete absorption of the incident waves at

the boundary occurs when the boundary impedances match the characteristic mechanical
impedances. The plate supports must include both translational and rotational viscous damping
elements to completely absorb the incident waves. In contrast with the characteristic mechanical
impedance of vibrating strings, which is frequency independent [5], the characteristic translational
and rotational impedances of transversely vibrating plates depend on frequency. Thus, the
optimal support properties also depend on frequency.

2.2. Viscoelastic supports

For viscoelastically supported plates, Fig. 1(b), the restraints from the supports may be
idealized by a combination of complex translational and rotational springs. In this case, the non-
dimensional boundary stiffnesses are given by

#T ¼ T 1þ iZt

� �
¼

St

Dk3
b

1þ iZt

� �
; ð9aÞ

#R ¼ R 1þ iZr

� �
¼

Sr

Dkb

1þ iZr

� �
; ð9bÞ

ARTICLE IN PRESS

J. Park et al. / Journal of Sound and Vibration 264 (2003) 775–794 779



where St and Sr are the real parts of the complex support stiffnesses, and Zt and Zr are the loss
factors. By substituting Eq. (9) into Eq. (4), the reflection ratios were calculated in terms of T, R,
Zt, and Zr. When the real part of the complex support stiffnesses, St and Sr, and the wavenumber
are non-zero, the reflection ratio, #C= #B

�� ��; is always positive. This shows that a complete dissipation
of the incident waves may not always be possible for viscoelastically supported plates. However, a
support stiffness that minimizes the amplitude of reflected harmonic bending waves may be found.
The exponentially decaying waves with complex amplitudes, #C; have a limited influence, and only
at the edges. They were neglected in the calculation. Only the reflected propagating waves with
complex amplitudes, #A; are minimized in the optimization problem. The minimum reflection
occurs when the parameters of the boundary stiffnesses satisfy the equations:

@ #A= #B
�� ��2
@T

¼ 0; ð10aÞ

@ #A= #B
�� ��2
@R

¼ 0; ð10bÞ

@ #A= #B
�� ��2
@Zt

¼ 0; ð10cÞ

@ #A= #B
�� ��2
@Zr

¼ 0: ð10dÞ

The Hessian matrix [8] was calculated to determine whether the roots correspond to a minimum, a
maximum, or a saddle point. Values that satisfy Eq. (10) must be positive to be physically
acceptable. From Eqs. (10) and (4a), four equations were obtained to calculate the optimal
support stiffness for minimum reflection:

a1t 2Zt þ 2a3tR þ a2tR
2 þ a1rZt 4þ a1rRð ÞR3

� �
T2 þ 2a1tZrR 1� a1rR

2
� �

T

� Zt 1þ 4Rð Þ þ a2tR
2 þ 2a1rR

3 a3t þ Zta1rR
� �� �

¼ 0;
ð11aÞ

a1r 2Zr � 2a3rT þ a2rT
2 � a1tZr 4� a1tTð ÞT3

� �
R2 þ 2a1rZtT 1� a1tT

2
� �

R

� Zr 1� 4Tð Þ þ a2rT
2 � 2a1tT

3 a3r � Zra1tT
� �� �

¼ 0;
ð11bÞ

T T2 2þ 6R þ a4rR
2 þ a1rR

3 4þ a1rRð Þ
� �

Z2t
�

þ 2ZrTR 1� a1rR
2 � 2Tð1þ RÞ

� �
Zt � a4rR

2 T2 þ 1
� �

þ TR 6þ 8R � 6Tð Þ � 1� 2T þ 4R þ 2T2
� �

�a1rR
3 6� 6T þ 4T2
� �

� a21rR
4 2� 2T þ T2
� ��

¼ 0; ð11cÞ

R R2 2� 6T þ a4tT
2 þ a1tT

3 a1tT � 4ð Þ
� �

Z2r
�
þ 2ZT TR 1� a1tT

2 þ 2R 1� Tð Þ
� �

Zr � a4tT
2 R2 þ 1
� �

þ TR 6þ 6R � 8Tð Þ � 1þ 2R � 4T þ 2R2
� �

þa1f T3 6þ 6R þ 4R2
� �

� a21tT
4 2þ 2R þ R2
� ��

¼ 0; ð11dÞ
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where

a1t ¼ 1þ Z2t ; a1r ¼ 1þ Z2r ; a2t ¼ Z2rZt þ 7Zt � 2Zr; a2r ¼ Z2t Zr þ 7Zr � 2Zt;

a3t ¼ 3Zt � Zr; a3r ¼ 3Zr � Zt; a4t ¼ 7þ Z2t ; a4r ¼ 7þ Z2r :

The Newton–Rapson method was used to solve Eq. (11) numerically. The solution of Eq. (11) is
not unique, i.e., there are multiple solutions that yield the same absolute minimum value of zero.
Three different special cases were investigated.

2.2.1. Plate supported by translational viscoelastic elements
Consider the plate supported by translational springs only (R=0). The effects of the

translational stiffness on the reflection ratio, #A= #B
�� ��2; are shown in Fig. 2(a) for various values of

Zt. In this case (for R=0), the real part and the loss factor of the optimal translational stiffness for
minimum reflection of propagating waves from the boundary are, from Eqs. (11a) and (11c),

St;opt ¼ 1
2
k3

bD; ð12aÞ

Zt;opt ¼ 1: ð12bÞ

The corresponding minimum reflection ratio is zero. The value of the loss factor in Eq. (12) is
greater than typical loss factor values for many viscoelastic materials, which are usually less than
0.3 [9]. For the loss factor fixed to a value smaller than unity, the optimal support stiffness for
minimal reflection is, from Eq. (11a),

St;opt ¼
k3

bDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ Z2t
� �q : ð13Þ

In many applications, it may be far more convenient to vary the real stiffness, St and Sr, by
changing the geometry of the support, the material thickness, the contact area, and/or the
curvature than to change the loss factor which depends mostly on the support material. Equation
(13) should then be used to approximately estimate the optimal support stiffness.

2.2.2. Plate supported by rotational viscoelastic elements
Fig. 2(b) shows the effects of the rotational stiffness for T=0. The real part and the loss factor

of the optimal rotational stiffness for minimum reflection of propagating bending waves from the
boundary are, from Eq. (11b),

Sr;opt ¼ �1
2
kbD; ð14aÞ

Zr;opt ¼ 1: ð14bÞ

In the above calculated optimal values, the rotational stiffness should be negative which was
not realistic in this case. As shown in Fig. 2(b), there are no conditions for complete suppression
of the reflected waves if the rotational stiffness is positive. When the loss factor of the rotational
element is smaller than unity the optimal support stiffness for minimum bending wave reflection
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is, from Eq. (11b),

Sr;opt ¼
kbDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1þ Z2r
� �q : ð15Þ

A comparison between Fig. 2(a) and (b) shows that the minimum reflection ratio is lower for
the translational springs than it is for the rotational springs for the same value of the loss factor.
This result suggests that the restriction of the translational motion is more effective than the
restriction of the rotational motion to increase the dissipation of vibration energy at the
boundary. The effects of the translational stiffness on the flow-induced vibrations of
viscoelastically supported plates were also discussed in Ref. [6].
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Fig. 2. Reflection ratio, #A= #B
�� ��; versus non-dimensional stiffness parameters. (a) Effects of translational stiffness for

R=0; (b) effects of rotational stiffness for T=0. Loss factors, Zt and Zr: —&—, 0.023 —J—, 0.06; —,—, 0.15 —n—,
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2.2.3. Plate supported by both translational and rotational viscoelastic elements

If the plate is supported by both translational and rotational stiffnesses, the optimal support
stiffness is different from the values for each element type alone, reported in Sections 2.2.1. and
2.2.2. A fixed loss factor value was imposed in this case. As per the discussion in Section 2.2.1,
this value was chosen to be smaller than unity. Fig. 3 shows the effects of the support properties
on the reflection ratio for Zt=Zr=0.15. The inverse of the reflection ratio is plotted for
visualization purposes. The values that satisfy Eqs. (11a) and (11b) include a saddle point for
T=0.989 and R=0.989. The saddle point migrates towards decreasing values of T and R as the
loss factors are increased. Two extrema are found at the boundaries, R=0 and N (the graph
shows only a limited range for R). As R-0, the optimal translational stiffness is the value
calculated from Eq. (13). As R-N, the optimal translational stiffness is twice the value
calculated from Eq. (13). The minimum reflection ratios are the same for both extrema. This
suggests that both extrema are absolute minima. These trends are the same for different values of
Zt and Zr.
The effects of the finite size of the plate, and the associated two-dimensional modal structural

response may well influence the optimal stiffness values. In the following sections, a different
approach was followed to calculate these values numerically.

3. Forced vibration of the rectangular viscoelastically supported plate

Fig. 4(a) illustrates one possible example of sound radiation from forced vibrations of a
viscoelastically supported plate. This configuration is intended to idealize a seal-supported vehicle
side-glass window. Fig. 4(b) shows a schematic of the viscoelastically supported rectangular plate.

ARTICLE IN PRESS

Fig. 3. Effects of the non-dimensional stiffness parameters on the inverse reflection ratio. Zt=Zr=0.15.

J. Park et al. / Journal of Sound and Vibration 264 (2003) 775–794 783



The plate has uniform thickness h, and dimensions a� b. The motion of the four edges was
assumed to be restrained by translational and rotational springs with complex stiffnesses, #St and
#Sr; respectively.
In general, many applications require the calculation of the response of the structure to

randomly distributed excitations. In this study, a simplified model for the distributed excitation,
based on delta functions, was used. When the excitation over the plate is perfectly incoherent,
homogeneous, and stationary, the cross-spectral density of the distributed excitations between
two locations, s1 and s2, is given by [10]

Gpp s1; s2;oð Þ ¼ FpðoÞdðs1 � s2Þ; ð16Þ

where Fp is the pressure spectral density. To calculate the forced vibration response, the frequency
transfer function between a harmonic excitation at one location and the resulting harmonic
transverse displacement response at another location was used. The frequency transfer function
between one applied point force at s1 and the associated velocity response at s2 is [10]

H s1; s2; tð Þ ¼
XN2

j¼1

#Cn

j s1ð Þ #Cj s2ð Þ #Hj oð Þ ð17Þ

ARTICLE IN PRESS

Fig. 4. (a) Sound radiation from forced vibrations of a seal-supported rectangular plate. (b) Geometry of the

rectangular plate and its boundary conditions. The supports are shown from a side view of the plate.
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Here, #Cj are the modal shape functions and #Hj are the frequency response functions for the
generalized co-ordinates, given as

#Hj oð Þ ¼
1

rbhab �o2 þ #o2
j

� �; ð18Þ

where #ojð¼ onj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iZj

p
Þ are the natural frequencies. The Rayleigh–Ritz method was used

applying beam functions as the trial functions to calculate the modal shape functions and the
natural frequencies. The plate vibration response was approximated as an N2-degrees-of-freedom
discrete system. Details of the Rayleigh–Ritz method used in this study are described in Ref [6].
The modal shape functions, #Cj; were orthogonal, i.e.,Z a

0

Z b

0

#Cjðx; yÞ #C�
mðx; yÞ dx dy ¼ abð Þdjm: ð19Þ

The spatially averaged mean square velocity of the plate, vav, is then [10]

vav ¼
XN2

j¼1

o #Hj oð Þ
�� ��2Z

S

Z
S

#Cj s1ð Þ #C�
j s2ð ÞGpp s1; s2;oð Þds1ds2; ð20Þ

where S is the plate surface. When delta functions are used as the correlation functions, Eq. (16),
the spatial average of the mean square velocity is

vav ¼ abFpðoÞ
XN2

j¼1

o #Hj oð Þ
�� ��2: ð21Þ

In the numerical simulations performed in this study, it was assumed that the wall pressure
spectral density (Fp) is unity over the entire frequency range of interest. The spatially averaged
mean square velocity in octave bands, with center, lower, and upper frequency limits of o0, o1,
and o2, respectively, was calculated analytically using

vo0
¼

1

2ab rbh
� �2X

N2

j¼1

1

o2
njZj

Im #ojln
#oj � o1

� �
#oj þ o2

� �
#oj þ o1

� �
#oj � o2

� �
( )

: ð22Þ

4. Sound radiation

4.1. Sound radiation from a viscoelastically supported plate

To predict the effects of support properties on the sound radiated from the plate, the radiated
sound power is calculated. Fig. 5 shows the co-ordinate system used in the estimation of the
radiated sound power. Assuming a baffled plate mounted on an infinite rigid plane surface, the
farfield complex acoustic pressure was calculated using the Rayleigh integral [7]

#p r; y;fð Þ ¼ �rao
2e

�ikar

2pr

Z a

0

Z b

0

#w x; yð Þeikaðx sin y cos fþy sin y sin fÞdxdy; ð23Þ
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where ka is the wave number (ka=o / c) with c the speed of sound in air and ra is the density of
air. The farfield assumption requires r to be much larger than the plate dimensions, a and b.
Accordingly, the radiated sound power, Wr; was calculated as the integral of the farfield acoustic
intensity over a hemisphere surrounding the plate as follows [11]:

Wr ¼
1

2

Z 2p

0

Z p=2

0

1

rac
#pj j2r2 sin y dy df: ð24Þ

By substituting Eq. (23) into Eq. (24), the sound power is

Wr ¼
rao

4

8p2c

Z 2p

0

Z p=2

0

Z
S

Z
S

#Gyy r1; r2;oð Þeika r2�r1ð Þ	ðsin y cos f; sin y sin fÞ dr1dr2sin y dy df; ð25Þ

where #Gyy is the cross-spectral density of the plate displacements between two locations, r1 and r2,
given by

#Gyy r1; r2;oð Þ ¼
XN2

m¼1

XN2

n¼1

Z
S

Z
S

#Cn

n r1ð Þ #Cn s1ð Þ #Cm r2ð Þ #C�
m s2ð Þ #H�

n oð Þ #Hm oð ÞGppðs1; s2;oÞ ds1ds2: ð26Þ

In Eq. (25), the contributions of the intermodal terms are accounted for. If the correlation
function of the distributed pressure is idealized as a delta function, Eq. (16), the intermodal terms
disappear, and the radiated sound power expression is simplified, i.e.,

Wr ¼
abrao

4Fp oð Þ
8p2c

XN2

j¼1

#Hj oð Þ
�� ��2Z 2p

0

Z p=2

0

Z
S

#Cj s1ð Þ eikas1	ðsin y cos f; sin y sin fÞ ds1

����
����
2

siny dy df: ð27Þ

The radiation efficiency is widely used to estimate the sound power radiated from vibrating
structures. From the farfield sound intensity, Wallace [12] derived approximate expressions for the
radiation efficiency of a simply supported, baffled plate. Berry et al. [11] calculated the radiation
efficiency of plates with general boundary conditions. In the present study, the radiation efficiency
of the jth mode, sj, was calculated using

sj ¼
k2

a

4p2ab

Z 2p

0

Z p=2

0

Z
S

#Cj s1ð Þeiks1	 sin y cos f; sin y sin fð Þds1

����
����
2

sin ydydf: ð28Þ
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From Eqs. (27) and (28), the radiated sound power is

Wr ¼
racFp oð Þ

2

XN2

j¼1

sj
o

rbh �o2 þ #o2
j

� �
������

������
2

: ð29Þ

To calculate the radiation efficiency, the integration with respect to y and f was performed
using Simpson’s 3/8 rule: the integral domain (y, f) was sub-divided into 40� 40 equally spaced
elements.

5. Numerical results and discussions

5.1. Effects of support stiffness on vibration response

For the Rayleigh–Ritz method predictions, the plate was approximated as a system with 196
degrees of freedom (N=14). The plate properties were chosen to be: a=0.466m;=0.375m;
h=0.00338m; rb=2700 kg/m3; E=7.2� 1010 Pa; and n=0.34. Fig. 6 shows the spatially averaged
mean square velocity calculated from Eq. (21) as a function of the support stiffnesses, St for
Zt=0.15 and Sr=0. The calculated natural frequencies change from those of a freely supported
plate to those of a simply supported plate as St is increased. A minimum in the velocity response,
for a fixed excitation amplitude, may be identified between the two limits.
Fig. 7 shows the spatially averaged mean square velocity in octave bands calculated from

Eq. (22) as a function of the translational stiffness, St for Zt=0.15 and Sr=0. The results for
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Fig. 6. Frequency dependence of the spatially averaged mean square velocity versus translational stiffness. #St ¼ St

(1+0.15i) and #Sr ¼ 0:
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octave bands centered at 250, 500, 1000, and 2000Hz are shown. For each octave band, there is an
absolute minimum in the calculated velocity. The optimal translational stiffness that minimized
the vibration response was determined from the simulation results for each octave band, and is
shown in Fig. 8 together with the translational stiffness calculated from Eq. (13). The calculated
optimal translational stiffnesses are generally in good agreement, which indicates that Eq. (13) is a
good first cut model to determine the optimal support properties. The finite size of the plate and
the modal response caused the differences between the two predictions. This difference increases
when the modal density (the average number of modes per unit frequency band) is small. For
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Fig. 8. Optimal translational stiffness calculated from the condition of: ——, minimum reflections from the edge;

—&—, minimum spatially averaged mean square velocity.

J. Park et al. / Journal of Sound and Vibration 264 (2003) 775–794788



homogeneous, rectangular plates, the modal density may be calculated using [13]

n fð Þ ¼

ffiffiffiffiffiffiffiffi
3rb

E

r
ab

h
: ð30Þ

The modal density is independent of frequency. Eq. (30) yields a value of 0.017 modes/Hz for the
plate mechanical properties used in this study. The bandwidth of octave bands increases as the
center frequency is increased. Consequently, the high-frequency octave bands include a larger
number of modes causing the two predictions, i.e., the numerically predicted optimal stiffness and
the values from Eq. (13), to agree well with each other. This is the case indeed for the results for
the 1000 and 2000Hz octave bands in Fig. 8.
Fig. 9 shows the predicted vibration response of the plate supported by both translational and

rotational springs. The inverse of the mean square velocity is plotted, to enhance the contrast
between the main trends. The trends are very similar to those observed in the calculated reflection
ratios shown in Fig. 3, except that the absolute minimum value of the vibration response occurred
not on the boundaries but when the translational and rotational stiffnesses were both close to
twice the values calculated from Eqs. (13) and (15), respectively. This result is due to the
contributions of the modal response of the plate.
To investigate the effects the modal response, the optimal stiffness was calculated for various

values of the plate aspect ratio, a/b. The plate dimension, a, remained the same and only the
dimension, b, was varied to change the aspect ratio. Fig. 10 shows the simulation results: the
optimum stiffness calculated from Eq. (13) and the values that minimize the forced velocity
response for the 500,1000 and 2000Hz octave bands. The difference between the two predictions
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Fig. 9. Effects of translational and rotational stiffness on spatially averaged mean square velocity in the 1000Hz octave

band, Zt=Zr=0.15.
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is due to the modal response of the plate as manifested by the change in the natural frequencies
with the plate aspect ratio. As shown in Fig. 10, the predicted optimal stiffness from Eq. (13) can
be greater or smaller than the optimal stiffness that minimizes the forced vibration response.
Aside from these minor variations, the optimal translational stiffnesses that minimize the forced
velocity response are in good agreement with the values calculated from Eq. (13).

5.2. Effects of support stiffness on the radiated sound

The effects of the support properties on the radiated sound were also investigated. Fig. 11
shows the radiation efficiency of the 1st, 2nd, and 4th modes calculated using Eq. (28) for three
different translational stiffness values. For St=1010 Pa, the calculated radiation efficiencies agree
well to those of the simply supported plate calculated using the approximate formula presented in
reference [12]. For St=102 Pa, the plate response is similar to that of a free plate. As shown in
Fig. 11, the radiation efficiency depends more strongly on the mode number than on the boundary
stiffness. Similar trends for the dependence of the calculated radiation efficiency on the boundary
conditions were reported in Ref. [11].
The sound power radiated from the plate, calculated using Eq. (29), is shown as a function of

the translational stiffness in Fig 12. For St=102 Pa, the plate response is analogous to that of a
free plate. In this case, sound is radiated mostly by the ‘‘piston mode’’ of vibration [11]. Most
other low-frequency modes of resonance did not contribute significantly to the calculated sound
power. For this reason, free plates are inefficient radiators of sound compared to simply
supported plates.
Fig. 13 shows the octave band sound power calculated from numerical integration of Eq. (29)

with respect to frequency using Df=1Hz.Due to the numerical integration, the variation of the
octave band sound power with the translational stiffness is less smooth than that of the velocity
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response in Fig. 7. For each octave band, there is an optimal support stiffness that minimizes the
sound radiation. The optimal stiffness again increases with the center frequency. The boundary
stiffness increases the natural frequencies of the system, as shown in Fig. 6, which results in
increased radiating wave number components [7]. To minimize the radiating wave number
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components, the translational stiffness should be as small as possible. When the translational
stiffness is too small, however, the velocity response increases. Consequently, the optimal
translational stiffnesses for minimal sound radiation are lower than the optimal values for
minimal velocity response. The difference between the two optimal values decreases as the center
frequency increases. This may need to be taken into consideration in practical applications, such
as side-glass vehicle windows, where control of the radiated sound is the primary objective.

6. Conclusions

The effects of the support properties on the forced vibration response and the associated
radiated sound of viscoelastically supported rectangular plates were investigated. Approximate
relations based on wave propagation at the edge were first derived. These allowed the calculation
of reflection ratios from which the optimal stiffness for maximum absorption of incident
transverse waves was determined. The optimal properties of translational and rotational viscous
dampers were found to coincide with the characteristic mechanical impedances of the plate.
For cases where the support is viscoelastic, perfect absorption cannot be achieved, but absolute

minima were identified in the reflection factors. The stiffness that minimized the vibration
response of finite rectangular plates subject to distributed random excitations was calculated. The
vibration of the compliantly supported rectangular plate was analyzed using the Rayleigh–Ritz
method. The optimal stiffness values calculated from two different criteria (maximum dissipation
of incident waves and minimum forced vibration response) were in good agreements.
The optimal translational stiffness for minimal radiated sound power was also calculated. It

was found that this optimal translational stiffness is smaller than the values for minimal velocity
response due to the increase in the number of radiating wave number components as the
translational stiffness is increased. Similar numerical procedures can be applied to investigate the
effects of rotational stiffness on the radiated sound power.
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The modal response was found to be strongly regulated by the energy dissipation at the edges,
which determined the amplitudes of the spatially averaged vibration response and the radiated
sound power. In the cases of the window sealing system shown in this paper, the proposed
methods to calculate the optimal support stiffness may be used as a guide in designing the
geometry and the mechanical properties of vehicle window seals. The support stiffness that
minimizes the reflection at the edges may be used as a first cut estimate for tuning purposes.
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Appendix A. Nomenclature

a, b plate dimensions in x and y directions (m)
#A; #B; #C complex amplitude of bending waves (m)

br viscous rotational damper coefficients (N 	 s/rad)
bt viscous translational damper coefficients (Pa 	 s)
c speed of sound in air (m/s)
D bending stiffness of plate (N 	m)
E elastic modulus of plate (Pa)
f frequency (Hz)
Gpp wall pressure cross-spectral density (Pa2/Hz)
h plate thickness (m)
#Hj frequency response functions in terms of generalized co-ordinates

ka, kb wave number (rad/m)
Mxx bending moment (N 	m)
n(f) modal density in cycles per second
N degree of freedom
Qxz shear force (N)
r1; r2; s1; s2 position vectors on plate surface
R, T non-dimensional stiffness parameters
#Sr complex rotational stiffness of boundary support (N/rad)
#St complex translational stiffness of boundary support (Pa)
St,opt optimal real stiffness of translational spring (Pa)
vav spatially averaged mean square velocity of plate (m2/s2/Hz)
vref reference mean square velocity, 10�12 m2/s2

vo0
spatially averaged mean square velocity in octave bands (m2/s2)

#Vj jth eigenvector of plate
w transverse displacement of plate (m)
Wr radiated sound power (W/Hz)
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Wref reference power, 10�12 W
Wo0

radiated sound power in octave bands (W)
#Cmn modal shape functions of plate
Zj system loss factor of jth mode
Zr, Zt loss factors of rotational and translational spring
ra, rb density of air and plate material, respectively (kg/m3)
sj radiation efficiency of jth mode
n the Poisson ratio of plate
jx angular deflection (rad)
Fp pressure spectral density (Pa2/Hz)
o circular frequency (rad/s)
onj damped natural frequency of jth mode (rad/s)
#oj complex natural frequency of jth mode (rad/s)
Indices m, n, j integer

References

[1] J.C. Snowdon, Vibration and Shock in Damped Mechanical Systems, Wiley, New York, 1968.

[2] W. Soedel, Vibrations of Shells and Plates, Marcel Dekker, New York, 1993.

[3] K.-H. Kang, K.-J. Kim, Modal properties of beams and plates on resilient supports with rotational and

translational complex stiffness, Journal of Sound and Vibration 190 (1996) 207–220.

[4] J.C. Macbain, J. Genin, Energy dissipation of a vibrating Timoshenko beam considering support and material

damping, International Journal of Mechanical Science 17 (1975) 255–265.

[5] G. Chen, J. Zhou, Vibration and Damping in Distributed Systems, Volume II: WKB and Wave Methods,

Visualization and Experimentation, CRC Press, Boca Raton, FL, 1993.

[6] J. Park, T. Siegmund, L. Mongeau, Analysis of the flow-induced vibrations of viscoelastically supported

rectangular plates, Journal of Sound and Vibration 261 (2003) 225–245.

[7] F. Fahy, Sound and Structural Vibration: Radiation, Transmission and Response, Academic Press, London, 1985.

[8] S.S. Rao, Engineering Optimization, Wiley, New York, 1996.

[9] J.D. Ferry, Viscoelastic Properties of Polymers, Wiley, New York, 1980.

[10] D.E. Newland, An Introduction to Random Vibrations, Spectral & Wavelet Analysis, Addison Wesley Longman,

Essex, UK, 1993.

[11] A. Berry, J.-L. Guyader, J. Nicolas, Ageneral formulation for the sound radiation from rectangular, baffled plates

with arbitrary boundary conditions, Journal of the Acoustical Society of America 88 (1990) 2792–2802.

[12] C.E. Wallace, Radiation resistance of a rectangular panel, Journal of the Acoustical Society of America 51 (1972)

946–952.

[13] R.H. Lyon, R.G. Dejong, Theory and Application of Statistical Energy Analysis, Butterworth-Heinemann,

Newton, MA, 1995.

ARTICLE IN PRESS

J. Park et al. / Journal of Sound and Vibration 264 (2003) 775–794794


	Influence of support properties on the sound radiated from the vibrations of rectangular plates
	Introduction
	Wave propagation at the edge
	Viscous supports
	Viscoelastic supports
	Plate supported by translational viscoelastic elements
	Plate supported by rotational viscoelastic elements
	Plate supported by both translational and rotational viscoelastic elements


	Forced vibration of the rectangular viscoelastically supported plate
	Sound radiation
	Sound radiation from a viscoelastically supported plate

	Numerical results and discussions
	Effects of support stiffness on vibration response
	Effects of support stiffness on the radiated sound

	Conclusions
	Acknowledgements
	Nomenclature
	References


